Kinetic boundary condition at a vapor-liquid interface.
نویسندگان
چکیده
By molecular dynamics simulations, the boundary condition for the Boltzmann equation at a vapor-liquid interface is found to be the product of three one-dimensional Maxwellian distributions for the three velocity components of vapor molecules and a factor including a well-defined condensation coefficient. The Maxwellian distribution for the velocity component normal to the interface is characterized by the liquid temperature, as in a conventional model boundary condition, while those for the tangential components are prescribed by a different temperature, which is a linear function of energy flux across the interface. The condensation coefficient is found to be constant and equal to the evaporation coefficient determined by the liquid temperature only.
منابع مشابه
THE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملA Kinetic Model for Vapor-liquid Flows
The evaporation of a liquid slab into vacuum is studied by numerical solutions of the Enskog-Vlasov equation for a fluid of spherical molecules interacting by Sutherland potential. The main aim of this work is to obtain the structure of the vapor-liquid interface in non-equilibrium conditions as well as the distribution function of evaporating molecules. The results show that the distribution f...
متن کاملUNIQUENESS OF SOLUTION FOR A CLASS OF STEFAN PROBLEMS
This paper deals with a theoretical mathematical analysis of one-dimensional solidification problem, in which kinetic undercooling is incorporated into the This temperature condition at the interface. A model problem with nonlinear kinetic law is considered. We prove a local result intimate for the uniqueness of solution of the corresponding free boundary problem.
متن کاملNumerical Study of Spherical Vapor Layer Growth Due to Contact of a Hot Object and Water
Vapor film formation and growth due to contact of a hot body and other liquids arise in some industrial applications including nuclear fuel rods, foundry and production of paper. The possibility of a steam explosion remains in most of these cases which could result in injuries and financial damage. Due to the importance of such phenomenon, this study deals with vapor layer forming, growth, and ...
متن کاملA More Accurate Prediction of Liquid Evaporation Flux
In this work, a more accurate prediction of liquid evaporation flux has been achieved. The statistical rate theory approach, which is recently introduced by Ward and Fang and exact estimation of vapor pressure in the layer adjacent to the liquid–vapor interface have been used for prediction of this flux. Firstly, the existence of an equilibrium layer adjacent to the liquid-vapor interface ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 95 8 شماره
صفحات -
تاریخ انتشار 2005